AVALIAÇÃO DA ATIVIDADE ANTI-HELMÍNTICA DE EXTRATOS DE Luxemburgia octandra ST. HILL. EM CAMUNDONGOS NATURALMENTE INFECTADOS COM Aspiculuris tetraptera E Vampirolepis nana

SANDRA L. DA CUNHA E SILVA¹; CÁSSIA CRISTINA F. ALVES²; HELCIO R. BORBA³; MÁRIO G. DE CARVALHO⁴; TERESA CRISTINA B. DO BOMFIM⁵

ABSTRACT:- SILVA, S.L. DA C. E; ALVES, C.C.F.; BORBA, H.R.; CARVALHO, M.G. DE; BOMFIM, T.C.B. DO [Evaluation of the anthelmintic activity of extracts from *Luxemburgia octandra* St. Hill. in mice naturally infected with *Aspiculuris tetraptera* and *Vampirolepis nana*.] Avaliação da atividade anti-helmíntica de extratos de *Luxemburgia octandra* St. Hill. em camundongos naturalmente infectados com *Aspiculuris tetraptera* e *Vampirolepis nana*. *Revista Brasileira de Parasitologia Veterinária* v. 14, n. 3, p.106-108, 2005. Departamento de Estudos Básicos e Instrumentais, Universidade Estadual do Sudoeste da Bahia, Campos de Itapetinga, BR. 415- Km 03 s/n., Itapetinga, BA, Brazil, 45700-000. E-mail: cunhasl@uesb.br

The anthelmintic activity of the extracts obtained from *Luxemburgia octandra* was evaluated naturally infected mice with *Aspiculuris tetraptera* and *Vampirolepis nana*. The leaves extracts were obtained through maceration and given to the animals by gavage in doses 8 and 20 mg/kg during three days. The etanolic and ethyl acetate extracts presented significant increase of the *V. nana* elimination, but did not present the nematicide effect against *A. tetraptera*.

KEY WORDS: Luxemburgia octandra, extracts, anthelmintic, Aspiculuris tetraptera, Vampirolepis nana.

RESUMO

A atividade anti-helmíntica dos extratos de *Luxemburgia* octandra foi avaliada em camundongos naturalmente infectados por *Vampirolepis nana* e *Aspiculuris tetraptera*. Os extratos obtidos através da maceração das folhas foram aplicados por via intra-gástrica, nas doses de 8 e 20 mg/kg durante três dias consecutivos. Os resultados obtidos com os extratos etanólico e acetato de etila revelaram percentuais significativos de eliminação de *V. nana*, não sendo observado efeito nematicida sobre *A. tetraptera*.

PALAVRAS-CHAVE: *Luxemburgia octandra*, extratos, antihelmínicos, *Aspiculuris tetraptera*, *Vampirolepis nana*.

INTRODUÇÃO

Luxemburgia octandra St. Hill., é uma planta pertencente à Família Ochnaceae que compreende cerca de 40 gêneros e 600 espécies tropicais e subtropicais. As espécies que constituem esta família são pouco conhecidas sob o ponto de vista químico e biológico. No Brasil ocorre aproximadamente nove gêneros com 105 espécies, sendo mais estudadas quimicamente as espécies dos gêneros Ochna, Lophira e Ouratea, que se caracterizam por metabolizarem flavonóides e biflavonóides (HEYWOOD, 1978). Recentemente foram realizados estudos químicos de *L. nobilis* (OLIVEIRA et al., 2002; CARVALHO et al., 2000) e de L. octandra (CARVALHO et al., 2004). Em virtude da escassez de dados, existentes na literatura, sobre efeitos biológicos das espécies pertencentes a esse gênero procurou-se no presente trabalho investigar o potencial anti-helmíntico de extratos de folhas de L. octandra utilizando como modelo experimental camundongos naturalmente infectados com Aspiculuris tetraptera e Vampirolepis nana.

MATERIALE MÉTODOS

Extratos vegetais: Foram utilizadas neste estudo folhas de *L. octandra* coletadas no Morro de São Sebastião, na

¹ Departamento de Estudos Básicos e Instrumentais, Universidade Estadual do Sudoeste da Bahia, Campos de Itapetinga, Br 415-Km 3, Itapetinga, BA 45700-000. E-mail: cunhasl@uesb.br

² Campos Universitário de Arraias, Universidade Federal de Tocantins, Av. NS 15, ALCNO 14, Bloco IV, 77020-120, Palmas, TO.

³ Departamento de Biologia Animal, Instituto de Biologia, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Km 7 da BR 465, Seropédica, RJ 23890-000. E-mail: borba@ufrrj.br

⁴ Departamento de Química, Instituto de Ciências Exatas, UFRRJ.

⁵ Departamento de Parasitologia Animal, Instituto de Veterinária, UFRRJ. E-mail: tcbb@ufrrj.br

cidade de Ouro Preto, Estado de Minas Gerais. A identificação botânica foi realizada no Instituto de Ciências Exatas e Biológicas da Universidade Federal de Ouro Preto (UFOP), Minas Gerais, sendo a exsicata depositada sob o número 26197 no herbário OUPR-UFOP. Para a obtenção dos extratos, as folhas (621,4g) secas a temperatura ambiente e protegias dos raios solares foram moídas em moinho de facas e submetidas à maceração com acetato de etila (10,4g) e depois com metanol (43g). Outra parte das folhas (620g) foi submetida à maceração com etanol (63g). O resíduo de cada extrato foi obtido através da retirada do solvente com evaporador rotativo sob vácuo e posteriormente utilizado para os testes anti-helmínticos.

Animais e testes anti-helmínticos: 128 camundongos albinos foram separados por sexo à desmama e mantidos em gaiolas coletivas de polipropileno, nas quais, a limitação das medidas de higiênicas possibilitou o nível desejado da infecção natural pelos helmintos A. tetraptera e V. nana. Dois grupos de 10 e um grupo de 12 camundongos, machos e fêmeas, com peso compreendido entre 20 e 22 g foram utilizados nos testes para A. tetraptera e outros três grupos com 10, 10 e 12 camundongos foram empregados para os testes com V. nana. Para os testes anti-helmínticos cada camundongo foi colocado individualmente em uma gaiola. As gaiolas eram dotadas de piso telado, com o objetivo facilitar a coleta diária de fezes segundo Amorim et al. (1987) e Amorim e Borba (1990). Os extratos foram aplicados por via intragástrica, no volume de 0,04 ml/g, com emprego de sonda de polietileno, durante três dias consecutivos a cada camundongo dos lotes experimentais. As fezes de cada gaiola foram coletadas diariamente, processadas em tamis de malha de 125 µm e examinadas sob microscópio estereomicroscópio, visando à contagem de oxiurídeos e à coleta de proglótides de V. nana eliminados do 2° ao 5° dia, perfazendo um total de quatro exames fecais. No quinto e último dia dos testes, os animais foram eutanasiados por inalação de vapores de éter etílico e necropsiados, examinando-se o conteúdo do intestino delgado e do intestino grosso, de modo a avaliar-se o peso úmido de segmentos de V. nana e o número de A. tetraptera remanescentes (AMORIM et al., 1999; CUNHA et al., 2003). Um grupo de 10 e outro de 12 camundongos, em cada tratamento, serviu como padrão ao receberem doses de mebendazol e nitroscanato em três dias consecutivos (20 mg/kg/dia e 100 mg/kg/dia, respectivamente), sendo submetidos a idêntico processo de avaliação antihelmíntica descrito para os animais tratados com os extratos metanólico (8 mg/kg/dia), etanólico (8 mg/kg/dia) e de acetato de etila (20 mg/kg/dia). Com a finalidade de verificar o percentual de eliminação espontânea dos oxiurídeos e de proglótides de *V. nana* foi realizado um grupo controle constituído de 10 camundongos para *A. tetraptera* e outro de igual número para *V. nana*, sem qualquer tratamento, empregandose os mesmos procedimentos descritos aos tratamentos anteriores. A avaliação do efeito anticestóide foi expressa em termos percentuais, considerando-se para o cálculo o peso dos proglótides apurados na contagem fecal em relação ao peso total dos segmentos eliminados nas fezes e à necropsia. Para a atividade antinematóide o resultado também foi expresso em termos percentuais, considerando-se o número de oxiurídeos encontrados nas fezes em relação ao número total.

Análise estatística: Os resultados obtidos nos testes antihelmínticos sofreram transformação angular e foram comparados com os valores encontrados no lote controle empregando-se o teste t de "Student". O nível de significância adotado foi p<0,05 (ZAR,1996).

RESULTADOS E DISCUSSÃO

Os dados da Tabela 1 mostram os percentuais de eliminação de A. tetraptera em camundongos submetidos à administração de extratos de L. octandra. Verifica-se que nenhum dos extratos testados produziu remoção significativa do oxiurídeo, tendo em vista o percentual de eliminação espontânea registrado no lote controle. Os testes anti-helmínticos utilizando os extratos etanólico e acetato de etila, com a finalidade de verificar a influência destes sobre a eliminação de V. nana, produziram efeito significativo (t=-1,81 p=0,048; t=-2,113, p=0,048; t=-2,113, p=0,048; t=-2,113, p=0,048; t=-2,113, t=-2,113= 0,047, respectivamente) como pode ser observado através dos percentuais de eliminação na Tabela 2. Com a mesma finalidade, o extrato metanólico resultou negativo (t = -0,42, p = 0,679) na eliminação do cestóide (Tabela 2), quando comparado com o controle. A avaliação anti-helmíntica referente ao oxiurídeo e ao cestóide foi realizada em condições igualmente favoráveis, tendo em vista a prevalência de 100% destes helmintos nos animais testados.

Observa-se também, na Tabela 2, que a eliminação fecal de segmentos de *V. nana* por influência do quimioterápico nitroscanato foi total e ocorreu praticamente nas primeiras 24

Tabela 1. Atividade anti-helmíntica dos extratos obtidos da folha de *Luxemburgia octandra* e de quimioterápicos na eliminação de *Aspiculuris tetraptera* em camundongos naturalmente infectados.

Parte usad	a Tratamentos	Número de animais	Número de Exame Fecal		Eliminação (%)
Folhas	Metanólico	10	0,0	174	0,0
	Etanólico	10	0,0	1188	0,0
	Acetato de etila	12	1,0	368	0,27
	Nitroscanato	12	499	282	64,0
	Mebendazol	10	324	0,0	100
	Controle	10	45	2836	1,56

Rev. Bras. Parasitol. Vet., 14, 3, 106-108 (2005) (Brazil. J. Vet. Parasitol.) 108 Cunha e Silva et al.

vampirolopio mana em camanaongos naturalmente inicotados.								
Parte usada Tratamentos		Número	Número de helmintos		Eliminação			
		de animais	Exame Fecal	Necropsia	(%)			
Folhas	Metanólico	10	11	54	16,9			
	Etanólico	10	49,5	79	38,5			
	Acetato de etila	12	64	122	34,4			
	Nitroscanato	12	88,7	0,0	100,0			
	Mebendazol	10	58	138,7	29,5			
	Controle	10	25,5	141	15,0			

Tabela 2. Atividade anti-helmíntica dos extratos obtidos da folha de Luxemburgia octandra e de quimioterápicos na eliminação de Vampirolepis nana em camundongos naturalmente infectados.

horas do início do teste, efeito contrário do que ocorreu com o mebendazol, que obteve 100% na eliminação fecal de *A. tetraptera* (Tabela 1). Ressalta-se o fato de que em nenhum extrato ocorreu mortalidade.

A análise fitoquímica preliminar revelou a presença, no extrato acetato de etila, de biflavonóides, flavonóides glicosilados e de uma nova bichalcona — a luxenchalcona (CARVALHO et al., 2004). Já existe relato de que o biflavonóide, isolado de *L. octandra*, apresentada atividade biológica antitumoral (CARVALHO et al., 2002). Os resultados ora obtidos sugerem que o biflavonóide também seja responsável pela atividade anticestóide apresentada pelo extrato acetato de etila (34,4%). Quanto ao extrato etanólico, que apresentou um percentual eliminação do cestóide (38,5%) superior ao extrato acetato de etila, não existe na literatura um estudo mais aprofundado no aspecto fitoquímico.

Apesar dos percentuais de eliminação obtidos para *A. tetraptera* não terem sido significativos, este fato não descarta a possibilidade de extratos de outras partes da planta em estudo apresentarem atividade antinematóide. Por esta razão, faz-se necessário a continuidade dos estudos no sentido de se obter mais dados sobre a atividade biológica e a fitoquímica de *L. octandra*.

REFERÊNCIAS

AMORIM, A.; BORBA, H.R. Ação anti-helmíntica III. Efeito de extratos aquosos de *Punica granatum* L. (romã) na eliminação de *Vampirolepis nana* e de oxiurídeos em camundongos. *Revista Brasileira de Farmácia*, v. 71, n. 4, p. 85-87, 1990.

AMORIM, A.; BORBA, H.R.; CARAUTA, J.P.P.; LOPES, D.; KAPLAN, M.A.C. Anthelmintic activity of latex of *Ficus* species. *Journal of Ethnopharmacology*, v, 64, n. 3, p. 255-258, 1999.

AMORIM, A.; BORBA, H.R.; SILVA, W.J. Ação anti-helmíntica de plantas. *Revista Brasileira de Farmácia*, v. 68, p. 64-70, 1987.

CARVALHO, M.G.; ALVES, C.C.F.; SILVA, K.G.S.; EBERLIN, M.N.; WERLE, A.A. Luxenchalcone, a new bichalcone and other constituents from *Luxemburgia octandra*. *Journal of the Brazilian Chemical Society*, v. 15, n. 1, p. 146-149, 2004.

CARVALHO, M.G. DE; GRYNBERG, N.F.; ECHEVARRIA, A.; OLIVEIRA, M.C.C. DE: Chemical Structure, Cytotoxic and Antitumours Activities of Biflavonoids from Brazilian Ouratea (Ochnaceae). In: GOVIL, J.N.; MAJUMDAR, D.K.; SINGH, V.K. (Org.). Recents Progress in Medicinal Plants in Phytochemistry and Pharmacology II. 8 ed. Texas, 2002. v. 8, p. 77-92.

CARVALHO, M.G.; OLIVEIRA, M.C.C.; WERLE, A.A. Chemical constituents from *Luxemburgia nobilis* (EICHL). *Journal of the Brazilian Chemical Society*, v. 11, n. 3, p. 232-236, 2000.

CUNHA, S.L.S.; BORBA, H.R.; BOMFIM, T.C.B.; CARVALHO, M.G.; CAVALCANTE, H.L.; BARBOSA, C.G. Ação antihelmíntica de extratos brutos de *Andira anthelmia* (Vell.) Macbr. e *Andira fraxinifolia* Benth. em camundongos naturalmente infectados por *Vampirolepis nana* e *Aspiculuris tetraptera*. *Parasitologia Latinoamericana*, v. 58, n. 1-2, p. 23-29, 2003.

OLIVEIRA, M.C.C.; CARVALHO, M.G.; SILVA, C.J. New biflavonoid and other constituents from *Luxemburgia nobilis* (EICHL). *Journal Brazilian Chemical Society*, v. 13, n. 1, p.119-123, 2002.

HEYWOOD.V.H. *Flowering plants of the world.* London: Oxford University Press, 1978. p. 82-83.

ZAR, J.H. *Biostatitical Analysis*, 3^a edição. New Jersey: Prentice Hall, 1966. 662 p.

Recebido em 15 de março de 2005. Aceito para publicação em 26 de julho de 2005.