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Abstract
The resistance of gastrointestinal nematodes (GIN) of sheep to anthelmintic treatment has motivated researchers 
to seek alternatives to reduce the use of these drugs in sheep farming and decontaminate pastureland based 
on knowledge about the survival dynamics of larvae. The aim of this work was to evaluate the migration of the 
infective larvae (L3) of Haemonchus contortus at different times of the day, strata, and sward heights, with and 
without shade after the deposition of contaminated sheep feces. The grass species used here was Cynodon 
dactylon cv. Tifton 85 in four treatments: low sward height shade; low sward height sunshine; high sward height 
shade; and high sward height sunshine. The number of L3 recovered from the pasture at different times of the 
day did not differ. The highest number of L3 recovered was in shade. The number of L3 at different times and 
strata occurred uniformly, confirming that L3 remain in the same place after migrating from dung at the hottest 
times of the day. Infective larvae of H. contortus were able to migrate across all the strata regardless of the time 
of day in the summer season in humid subtropical climate.

Keywords: Gastrointestinal nematodes, parasite, pasture management, sheep farming.

Resumo
A resistência dos nematódeos gastrintestinais (NGI) de ovinos aos tratamentos com anti-helmíntico tem estimulado 
os pesquisadores a buscar alternativas para reduzir o uso desses medicamentos na ovinocultura e descontaminar 
pastagens com base no conhecimento sobre a dinâmica de sobrevivência das larvas. O objetivo do trabalho foi 
avaliar a migração das larvas infectantes (L3) de Haemonchus contortus em diferentes horários do dia, estratos, 
e alturas do pasto, com e sem sombra, após a deposição de fezes de ovinos contaminadas. A espécie forrageira 
utilizada foi Cynodon dactylon cv. Tifton 85 em quatros tratamentos: pasto baixo sombra; pasto baixo sol; pasto 
alto sombra; e pasto alto sol. Não houve diferença na recuperação de L3 no pasto nos diferentes horários. As 
maiores recuperações foram encontradas na sombra. O número de larvas recuperadas nos diferentes horários 
e estratos ocorreu de forma uniforme, confirmando que as L3 podem permanecer no mesmo local, após migrar 
do bolo fecal, nos horários mais quentes do dia. Larvas infectantes de H. contortus foram capazes de migrar por 
todos os estratos, independentemente da hora do dia no verão em clima subtropical úmido.

Palavras-chave: Nematódeos gastrintestinais, parasitas, manejo do pasto, criação de ovinos.
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Introduction
Gastrointestinal nematodes (GIN) can reduce the profitability of sheep farms (Charlier et al., 2014) by directly 

impacting the productive performance of flocks, diminishing growth, and affecting the finishing period of animals 
(Pinheiro et al., 2000). The anthelmintic resistance of nematode parasites in sheep due to intensive drug use 
(Salgado & Santos, 2016) is an important factor to be considered in their management.

Approximately 95% of the parasite population is present in pasture and only 5% in animals (Bowman et al., 
2003). An understanding of the vertical migration of parasite larvae and of the grazing behavior of herbivores could 
contribute to improve pasture management, aiming to reduce L3 intake and the use of anthelmintics to control 
parasites (Silva et al., 2008, Tontini et al., 2015). However, the number of H. contortus L3 in Brachiaria decumbens 
grass forage strata remained relatively constant throughout the day. This indicates there is no particular period 
of the day when grazing sheep are at higher risk of infection (Silva et al., 2008).

Several management practices have been tested in the attempt to reduce the damage caused by GIN in animals. 
However, as yet there is no single established recommendation that can be applied worldwide, because variations 
in climate, soil, and vegetation can affect the development and migration of larvae (van Dijk & Morgan, 2011). Even 
so, some practices are widely recommended by technicians, such as animals having access to pasture only after 
the dew has evaporated (Costa et al., 2011). This recommendation makes sense if L3 die or descend to the base 
of the plant as the due evaporates.

In fact, the availability of L3 in the pasture depends on the presence of free water, rain, or fog and condensed 
dew (van Dijk & Morgan, 2011). Free water moistens feces, allowing L3 to migrate from fecal matter to the pasture. 
Moreover, the formation of a continuous film of water on grass blades favors the migration of larvae to the top 
of the plant (Amaradasa et al., 2010). Santos et al. (2012) found H. contortus L3 at the top of Brachiaria decumbens 
even with low relative humidity (autumn). The authors stated that the moisture film produced by dew sufficed for 
L3 to reach the highest parts of the plant.

Tontini et al. (2015), who evaluated the distribution of L3 during summer in the various strata of the tropical 
grass Panicum maximum cv. Aruana, found larvae distributed evenly across the strata. On the other hand, some 
studies have shown that L3 concentrate in the lower strata in some seasons (Vlassoff, 1982). Rocha et al. (2007) 
found a higher concentration of Trichostrongylus colubriformis in the upper strata of Panicum maximum cv. Aruana 
and in the lower strata of Brachiaria decumbens in autumn. However, in spring, the same authors found larvae in 
the upper portions of both forage species. These findings demonstrate that the location of L3 cannot be pinpointed, 
given that their migration can be facilitated or hindered by a number of factors.

Allowing animals access to well-managed pastures so they can graze the upper parts of plants of higher nutritional 
quality (Marchesan et al., 2013), combined with adequate nutrition planning, can reduce parasitism (Almeida et al., 
2020). Nutrition plays an important role in the immune response to GIN (Coop & Kyriazakis, 2001). Animals that 
received high protein diets were able to better withstand parasitism (Bricarello et al., 2005; Louvandini et al., 2006). 
This fact, allied to knowledge about the grazing behavior of herbivores (which graze approximately 50% of the top 
of plants in the first mouthful) has been used to reduce L3 intake (Cangiano et al., 2002).

Based on the above findings, the purpose of this work was to evaluate the migration of L3 of Haemonchus 
contortus in Tifton 85 Bermuda grass (Cynodon spp.), in shade and sunshine, to different pasture heights at different 
times of the day, strata, and days after deposition of contaminated feces.

Material and methods

Study site and climate data
The experiment took place during February 2017 (28 days) in Ponta Grossa, Paraná, Brazil (25º 05’ 49” S, 50º 03’ 11” W;  

altitude 990 m). The region’s climate is humid subtropical (Cfb), according to the Köppen classification, with 
moderately hot summers and relatively cold winters. Meteorological data (temperature, humidity, solar radiation, 
rainfall and dew) were provided by the meteorological station located one kilometer from the experimental site. 
The presence of dew was observed through a variable obtained from the weather station called leaf wetness 
duration (LWD), which corresponds to the time during which condensation water droplets remain on the leaf surface 
(Sentelhas et al., 2008). Figure 1 illustrates the climatic variations that occurred during the experimental period.
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Experimental design
The experimental design involved Cynodon dactylon var. dactylon cv. Tifton 85 Bermuda grass (summer pasture). 

The area used for the experiment was not intended for grazing. The design consisted of sixteen 16.2 m2 plots, each 
of which was subdivided into 18 subplots of 30 x 30 cm. The subplots were delimited with wooden stakes and 
string. The plots were separated by 0.5 m gaps to allow for circulation of researchers on the site.

The area of the experiment was divided into two parts: with and without the presence of trees (shade and 
sunshine). The forage heights were defined as high (20 cm) and low (10 cm). Thus, the following treatments were 
applied: low sward height – shade (LSH – shade), LSH – sunshine, high sward height – shade (HSH – shade) and 
HSH – sunshine.

Figure 1. Meteorological data: Mean daily temperature (ºC), Solar radiation (cal/cm2) (A), Rainfall (mm) and Relative Humidity 
(%) (B) during the experimental period in February 2017. The climate of Ponta Grossa, PR, Brazil, is humid subtropical (Cfb), 
according to the Köppen classification, with moderately hot summers.
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Deposition of feces
The experimental plot was contaminated using feces obtained from two male sheep naturally infected with GIN 

eggs. The use of rams (male sheep) was approved by the Ethics Committee on Animal Use at the State University of 
Ponta Grossa (Protocol 006/2016). The collection of fecal matter started on 24 Jan 2017 and the feces were stored 
in a refrigerator at 10°C. On the day of deposition, all the collected feces were weighed, homogenized, and six 
counts of eggs per gram of feces (EPG) were randomly conducted on the total volume of feces, involving a total of 
288 samples, at 2.5 grams of feces, each containing an average of 60,000 eggs, following the procedure described 
by Silva et al. (2008). All the plots were contaminated (in the center of the plots) on 31 Jan 2017, using one fecal 
sample (2.5 grams) on each plot.

Recovery of infective larvae from forage and feces
Before collecting fecal matter and grass to evaluate larval migration, the height of the grass was determined 

based on the average height measured at five random points in each subplot, using a sward stick (Barthram, 1985).
To evaluate the vertical migration of L3 on the sward, the grass was cut manually and divided into three strata: 

upper stratum (A), consisting of 50% of the initial grass height, followed by an intermediate stratum (B) 25% below 
stratum A, and a final cut close to the ground to collect the lower grass (C). The samples of pasture were cut to 
simulate the grazing horizons of the animals. Ruminants use the strategy of preferentially grazing the first layers 
of forage, in order to maximize the quality of the diet and intake rate, since the upper layers user have more and 
better quality grass blades (Baumont et al., 2004).

L3 were recovered from both feces and pasture on days 7 (D7), 14 (D14), 21 (D21), and 28 (D28) after the 
deposition of feces and at different times of day (6 a.m., 12 p.m., and 6 p.m.).

Samples of fecal matter and grass were collected manually from the subplots and stored in labelled plastic bags 
until they were processed in the laboratory. The L3 were extracted using the technique described by Baerman and 
modified by Ueno & Gonçalves (1998). After 24 h in a Baermann apparatus, the supernatant was removed and the 
sediment transferred to graduated tubes. Subsequently, the L3 recovered from the samples were identified and 
quantified (Keith, 1953). The results are expressed as L3 per kilogram of dry matter (L3/kg DM).

After the L3 extraction procedure, the grass and feces samples were dried at 60ºC for 72 h to determine the 
dry matter (DM) content.

Statistical analysis
The study used block randomization with a 6 x 2 x 2 factorial design of treatments with six replicates at each 

time point (06:00 a.m., 12:00 p.m., and 06:00 p.m.), two treatments of luminance levels (shade vs. sunshine), and 
two treatments of grass height (high vs. low).

Larvae recovery data were log transformed (Log (x+1)) to account for non-homogeneous variance and were 
analyzed using the generalized linear model (GLM) of Minitab® version 18.1 software (Minitab Inc., 2017). The data 
were analyzed per day of collection. Only the recovery of L3 in fecal matter was compared between the collection 
days, in order to determine how long the feces remained a viable reservoir for larvae. Collection time, stratum, and 
sward height were included in the model. The interaction between time and stratum was analyzed. However, to 
make them easier to understand, they are expressed as arithmetic means ± standard deviation. The means were 
compared by the Tukey test with a 5% level of significance.

Results
Only Haemonchus contortus counts were used, since this was the most abundant species of nematode. In 

this study, larvae of the genera Haemonchus (93.1%), Trichostrongylus (4.6%), and Oesophagostomum (2.3%) were 
recovered from Tifton grass.

L3 recovery and weight of fecal matter
The recovery of L3 from feces at the evaluated times did not differ (p>0.05). In general, the feces recovered 

in different times presented 7,217±24,644 L3/kg DM; 6,251±28,345 L3/kg DM, 8,927±30,897 L3/kg DM at 6:00 
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am, 12:00 noon and 6:00 pm, respectively. The same applies to the treatments, i.e., with no differences in 
the number of larvae recovered from feces between treatments (p>0.05) on the different days of collection 
(Table 1).

On D7, more L3 were recovered from fecal matter (29,960±50,427 L3/kg DM) than on any other day (p<0.05; 
Table 1). With regard to the weight of feces, on D7 the weight of LSH - shade was lower than that of the other 
treatments (p<0.05). In this treatment, fecal matter underwent 90.6% degradation. The maximum and minimum 
temperatures on the day of collection were 28.1ºC and 19.9ºC, respectively. The climatic conditions on D7 were 
11  mm of rain, 87% RH, and 240.8 cal/m2 of solar radiation.

On D14, both LSH and HSH - shade treatments had lower fecal weights than treatments exposed to sunshine 
(p<0.05). As expected, the treatments with the lowest fecal weights were also those with the highest percentage 
degradation (91.12% and 89.36%, LSH - shade and HSH - shade, respectively). On this day, the number of L3 in 
fecal matter were already quite low (28.80±215.5 L3/kg DM – Table 1).

On D21, the LSH - shade presented lower fecal weight (p<0.05) and 92.24% degradation compared to the high 
treatments (sunshine and shade), but did not differ from the LSH - sunshine treatment. The number of larvae 
recovered on D21 was 82.60±612.9 L3/kg DM. Lastly, on D28, the high sunshine treatment resulted in higher fecal 
weight (p<0.05) than the other treatments, and the lowest degradation rate, i.e., 83.2%. On D28, larvae were no 
longer recovered from feces.

Table 1. Mean fecal weight ± standard deviation, percent (%) degradation of feces, and number of Haemonchus contortus third 
stage larvae per kilogram of dry matter (arithmetic means ± standard error) in feces recovered on different days.

Days 
after fecal 

deposition*
Treatments** Feces (g) % degradation L3/kg DM feces (1) L3/kg DM feces (2)

7 LSH - shade 0.235±0.14b 90.60 45,615±81,405 29,960±50,427A

LSH - sunshine 0.508±0.18a 79.68 11,679±23,278

HSH - shade 0.420±0.17a 83.20 56,621±50,928

HSH - sunshine 0.526±0.12a 78.96 17,137±31,757

14 LSH - shade 0.222±0.12c 91.12 0.00±0.00 28.80±215.50B

LSH - sunshine 0.416±0.15ab 83.52 0.00±0.00

HSH - shade 0.266±0.15bc 89.36 0.00±0.00

HSH - sunshine 0.447±0.20a 82.12 115±431

21 LSH - shade 0.194±0.14b 92.24 0.00±0.00 82.60±612.90B

LSH - sunshine 0.318±0.18a 87.28 284.00±1,136

HSH - shade 0.406±0.16a 83.76 0.00±0.00

HSH - sunshine 0.424±0.13a 83.04 0.00±0.00

28 LSH - shade 0.271±0.11b 89.16 0.00±0.00 0.00±0.00B

LSH - sunshine 0.305±0.12ab 87.80 0.00±0.00

HSH - shade 0.224±0.08b 91.04 0.00±0.00

HSH - sunshine 0.420±0.15a 83.20 0.00±0.00

*Days after deposition of sheep feces contaminated with Haemonchus contortus; **Treatments: LSH – shade = low sward height shade; LSH – 
sunshine = low sward height sunshine; HSH – shade = high sward height shade; HSH – sunshine = high sward height sunshine; Different lowercase 
letters in the feces column indicate significant statistical differences as a function of day per treatment, and different uppercase letters in the L3/
kg DM column indicate significant statistical differences as a function of day (Tukey test; p<0.05); (1) mean L3/kg DM recovered from feces per 
day of treatment; (2) mean L3/kg DM recovered from feces per day.
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Pasture

Recovery of L3 from pasture
There was no difference in the number of larvae recovered from the pasture at the different times of day 

(p>0.05). In general, 46±278 L3/kg DM, 105±762 L3/kg DM and 82±371 L3/kg DM were recovered at 6:00 am, 12:00 
noon and 6:00 pm, respectively. No significant interaction was found between time and stratum (p>0.05).

Evaluating the days separately, there was a significant difference in the recovery rate of L3/kg DM between 
treatments and strata on D7 (p<0.05). No L3 were recovered in LSH - sunshine on D7 (Table 2). On that day, the mean 
number of L3 recovered (180 L3/kg DM) from stratum C was higher than the mean number recovered from other 
strata (Table 2). On the other days of collection, the recovery of L3/kg DM did not differ between plant strata (p>0.05).

The recovery of L3/kg DM from the pasture also differed significantly between treatments (p<0.05) on D14. On 
that day, treatments LSH - shade (324±1037 L3/kg DM) and HSH - shade (153±352 L3/kg DM) showed higher larvae 
recovery rates than treatments in sunshine (Table 2). On D21 and D28, the number of L3 recovered from pasture, 
in both periods, was minimal (p>0.05).

Table 2. Number of Haemonchus contortus third stage larvae per kilogram of dry matter ± standard deviation (minimum and 
maximum in parenthesis) recovered from different herbage strata in different treatments on different days.

Days 
after fecal 

deposition*
Treatments**

Herbage strata
Overall Mean

A B C

7 LSH - shade 117±496 573±2430 180±587 290±1458 (0-10309)

LSH - sunshine 0±0 0±0 0±0 0 (0-0)

HSH - shade 0±0 18±75 269±144 96±370 (0-2343)

HSH - sunshine 13±53 0±0 270±647 94±388 (0-2454)

Overall Mean 32±249b (0-2105) 148±1215b (0-10309) 180±533a (0-2454) 120±778# (0-10309)

14 LSH - shade 576±1631 114±292.8 282±702 324±1037A (0-6548)

LSH - sunshine 0±0 122±518 228±969 117±629B (0-4109)

HSH - shade 223±309 136±445 99±289 153±352A (0-1818)

HSH - sunshine 19±83 56±166 0±0 25±107B (0-602)

Overall Mean 205±846 (0-6547) 107±373 (0-2198) 152±612 (0-4110) 155±639# (0-6547)

21 LSH - shade 0±0 47±198 0±0 15±114 (0-840)

LSH - sunshine 0±0 0±0 0±0 0 (0-0)

HSH - shade 0±0 0±0 0±0 0 (0-0)

HSH - sunshine 15±63 101±429 19±79 45±253 (0-1818)

Overall Mean 4±32 (0-269) 37±235 (0-1818) 5±40 (0-338) 15±139 (0-1818)

28 LSH - shade 0±0 45±190 22±94 22±121 (0-806)

LSH - sunshine 0±0 0±0 0±0 0 (0-0)

HSH - shade 0±0 68±220 46±196 38±170 (0-893)

HSH - sunshine 14±61 58±247 0±0 24±146 (0-1049)

Overall Mean 4±30 (0-258) 43±189 (0-1049) 17±108 (0-833) 21±127 (0-1049)

*Days after deposition of sheep feces contaminated with Haemonchus contortus; **Treatments: LSH – shade = low sward height shade; LSH – 
sunshine = low sward height sunshine; HSH – shade = high sward height shade; HSH – sunshine = high sward height sunshine; Different lowercase 
letters in the same line indicate significant statistical differences as a function of strata/day and different uppercase letters in the same column 
indicate significant statistical differences as a function of treatment/day (Tukey test; p<0.05); Means followed by # indicate a statistical difference 
between the collection days.
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Discussion
GIN larvae successfully migrated through all the plant strata, regardless of the time of day. Seven days after 

the fecal deposition in the environment, a fraction of the L3 were recovered in fecal pellets. The wet weather that 
prevailed from the day of contamination until the first collection (D7) favored the development of eggs to larvae 
due to frequent rainfall, moderate temperatures and high humidity (Figure 1). H. contortus eggs developed rapidly 
to L3 (three to four days) within a temperature range of 20ºC to 25.8ºC, like the conditions reported by Hsu & Levine 
(1977). Temperature, humidity, and rainfall in the first seven days after the deposition of feces were important 
factors for the development of the free-living stages of H. contortus (O’Connor et al., 2007; Reynecke et al., 2011).

This experiment showed that on D7, larvae were still present in feces and in the lower strata, since seven days 
did not suffice for the larvae to leave the feces and migrate long distances from the ground.

The presence of dew in the pasture was observed only in the early hours of the morning. This indicates that 
even after evaporation/reduction of dew, the larvae remain in the same place after migrating from the feces. Larvae 
need free water only to abandon the dung, but not to climb up grass blades (van Dijk & Morgan, 2011). For larvae 
to migrate through the canopy of the plant, the moisture of dew is sufficient (Santos et al., 2012). In addition, larvae 
that reach the highest parts of the grass are able to remain there due to anhydrobiosis, a mechanism used by GIN 
larvae to enable them to survive the absence of water (Lettini & Sukhdeo, 2006).

Larvae exposed directly to solar radiation are subject to high mortality rates (van Dijk et al., 2009; Silva et al., 
2008). This fact was observed in our study on D7 in LSH - sunshine and D14 in LSH and HSH - sunshine, when low 
numbers of L3 were recovered. The sward height in full sunshine, especially HSSH - sunshine, was found to provide 
a more favorable microclimate than LSSH - sunshine, as it probably reduced the intensity of solar radiation reaching 
the base of the grass sward, enabling some larvae to survive for longer periods (Moss & Bray, 2006).

Significant numbers of L3 were recovered on D14, possibly due to high RH (88.3%) and frequent rainfalls 
recorded from the day of deposition up to D14. The rainfall and RH that prevailed in the period caused an increase 
in the humidity of the feces, leading to higher degradation and favoring the migration of larvae to the grass sward 
(Almeida et al., 2020). Although we did not measure the climatic variables in each treatment (with and without the 
presence of trees – shade), the shade certainly contributed to retain more moisture in the environment than the 

Sward heights
The sward structure was evaluated within each day and differed over the experimental period. On D7, all the 

treatments differed (p<0.05 – Table 3). On this day, the LSH - sunshine (15.50±3.3 cm) had the lowest height and 
the HSH - sunshine (25.94±2.5 cm) the highest height. On D14, HSH - sunshine (21.02±2.3 cm) differed from the 
other treatments (p<0.05). HSH - shade differed from LSH - sunshine, but not from LSH - shade. This, in turn, did 
not differ from LSH - sunshine. D21 followed the same trend as D7, with differences between all heights, LSH - 
sunshine (14.05±2.7 cm) had the lowest and HSH - sunshine the highest height (30.75±3.1 cm). Lastly, on D28, the 
HSH - sunshine (28.52±2.9 cm) was higher than all the other treatments, and the treatments in shade (high and 
low) did not differ from each other (p>0.05), but differed from the LSH - sunshine, which presented the lowest 
height (15.46±2.4 cm).

Table 3. Tifton 85 grass sward height in different treatments on different collection days.

Treatments**

Days after fecal 
deposition* LSH - shade LSH - sunshine HSH - shade HSH - sunshine

7 18.24±3.7c 15.50±3.3c 22.82±2.7b 25.94±2.5a

14 16.53±2.4bc 15.55±2.8c 17.98±2.5b 21.02±2.3a

21 23.27±1.8c 14.05±2.7d 27.94±3.8b 30.75±3.1a

28 25.56±2.1b 15.46±2.4c 26.40±3.1b 28.52±2.9a

*Days after deposition of sheep feces contaminated with Haemonchus contortus; **Treatments: LSH – shade = low sward height shade; LSH – 
sunshine = low sward height sunshine; HSH – shade = high sward height shade; HSH – sunshine = high sward height sunshine; Means followed 
by different letters on lines differ by Tukey test (p<0.05).
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treatments in sunshine (Almeida et al., 2018). Faria et al. (2016), who evaluated integrated crop-livestock-forestry 
systems, also reported higher recovery rates of GIN larvae than in systems without the presence of trees (sunshine).

Fourteen days after deposition of the feces in the environment, L3 were already present in the upper stratum, 
it indicates that the larvae contained in feces on D7 successfully migrated to the top of the plant after leaving the 
dung. The presence of plant cell extensions called trichomes in different forage species can influence larval migration 
(Niezen et al., 1998). Trichomes can hinder the movement of L3, or facilitate their migration by accumulating dew 
moisture (Niezen et al., 1998; Rocha et al., 2007). In our experiment, we did not measure the number of trichomes, 
but Tifton grass contains trichomes, albeit in very small quantities (Ahmad et al., 2016). The paucity of trichomes, 
allied to the shade produced in treatments with trees, facilitated the migration of larvae to the top of the plant, 
providing a microclimate with ideal conditions for larval development. Marley et al. (2006) reported that red clover 
negatively affected the migration of H. contortus larvae due to the presence of trichomes on its leaves and stems.

There is a positive correlation between rainfall and the emergence of larvae in pastures, since rain probably 
favors the development and survival of larvae in the field (Amaradasa et al., 2010). However, in this study, some L3 
may have been removed from the pasture by a heavy rain that dumped 48.8 mm of water over a one-hour period, 
three days prior to collection on day 21. This intense rainfall may have carried some L3 away from the pasture 
(Grønvold & Høgh-Schmidt, 1989), which could explain the low L3 recovery on days 21 and 28 after fecal deposition. 
In addition, the moderate temperatures and high relative humidity recorded throughout the experimental period 
enabled larvae to develop and migrate to the sward in the first 14 days. However, this rapid development of larvae 
also resulted in their lower survival time in the environment (Rocha et al., 2014; Carneiro & Amarante, 2008).

Parasitological studies that evaluate the survival and migration dynamics of gastrointestinal nematodes in 
their developmental stages are important but increasingly meager. Such studies involve time-consuming but low-
cost methods that allow for the choice of forages with strategic potential in the overall control of gastrointestinal 
nematodes reduced use of anthelmintics, thanks to the lower occurrence of L3, and the high nutritional quality 
and availability of forage during the months of greatest nutritional demand of animals susceptible to nematode 
infections.

In our experiment, the presence of shade and pastures with greater sward heights in full sunshine provided 
better climatic conditions for larval development and migration. In addition, H. contortus L3 were able to migrate 
across all the strata regardless of the time of day in the summer season. Therefore, there is no evidence that could 
help establish grazing schedules when animals are at lower risk of becoming infected by reducing larvae-host 
contact in regions of humid subtropical climate.
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